The Best Constant and Extremals of the Sobolev Embeddings in Domains with Holes: the L∞ Case

نویسندگان

  • JULIÁN FERNÁNDEZ BONDER
  • JULIO D. ROSSI
چکیده

Let Ω ⊂ R be a bounded, convex domain. We study the best constant of the Sobolev trace embedding W 1,∞(Ω) ↪→ L∞(∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole. That is, we deal with the minimization problem S A = inf ‖u‖W1,∞(Ω)/‖u‖L∞(∂Ω) for functions that verify u |A= 0. We find that there exists an optimal hole that minimizes the best constant S A among subsets of Ω of prescribed volume and we give a geometrical characterization of this optimal hole. In fact, minimizers associated to these holes are cones centered at some points x0 on ∂Ω and the best holes are of the form A∗ = Ω \B(x0, r∗). A similar analysis can be performed for the best constant of the embedding W 1,∞(Ω) ↪→ L∞(Ω) with holes. In this case we also find that minimizers associated to optimal holes are cones centered at some points x0 on ∂Ω and the best holes are of the form A ∗ = Ω \B(x0, r∗).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of the Best Sobolev Trace Constant in Expanding and Contracting Domains

We study the asymptotic behavior for the best constant and extremals of the Sobolev trace embedding W 1,p(Ω) ↪→ Lq(∂Ω) on expanding and contracting domains. We find that the behavior strongly depends on p and q. For contracting domains we prove that the behavior of the best Sobolev trace constant depends on the sign of qN − pN + p while for expanding domains it depends on the sign of q − p. We ...

متن کامل

An Optimization Problem Related to the Best Sobolev Trace Constant in Thin Domains

Let Ω ⊂ RN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W 1,p(Ω) ↪→ Lq(∂Ω) for functions that vanish in a subset 17 A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf ‖u‖ W1,p(Ω) /‖u‖ Lq(∂Ω) for functions that verify u |A = 0. It is known that there 19 exists an optimal hole that minimizes the best constant SA among s...

متن کامل

Optimization Problem for Extremals of the Trace Inequality in Domains with Holes

Let Ω be a bounded smooth domain in R with N ≥ 2 and 1 < p < ∞. We denote by p∗ the critical exponent for the Sobolev trace immersion given by p∗ = p(N − 1)/(N − p) if p < N and p∗ = ∞ if p ≥ N . For any A ⊂ Ω, which is a smooth open subset, we define the space W 1,p A (Ω) = C ∞ 0 (Ω \A), where the closure is taken in W −norm. By the Sobolev Trace Theorem, there is a compact embedding (1.1) W 1...

متن کامل

Extremals for the Sobolev Inequality on the Seven Dimensional Quaternionic Heisenberg Group and the Quaternionic Contact Yamabe Problem

A complete solution to the quaternionic contact Yamabe problem on the seven dimensional sphere is given. Extremals for the Sobolev inequality on the seven dimensional Hesenberg group are explicitly described and the best constant in the L Folland-Stein embedding theorem is determined.

متن کامل

Global Poincaré Inequalities on the Heisenberg Group and Applications

Let f be in the localized nonisotropic Sobolev space W 1,p loc (H ) on the n-dimensional Heisenberg group H = C × R, where 1 ≤ p < Q and Q = 2n + 2 is the homogeneous dimension of H. Suppose that the subelliptic gradient is gloablly L integrable, i.e., Hn |∇Hnf |pdu is finite. We prove a Poincaré inequality for f on the entire space H. Using this inequality we prove that the function f subtract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006